天拓解析 多个维度了解智能制造
发布日期:
2017-01-18

智能制造这个词大家都不陌生,尤其是在近年来更是广为流传,而各家对智能制造的理解也各不相同。天拓四方认为“智能制造”可以从制造和智能两方面进行解读。首先,制造是指对原材料进行加工或再加工,以及对零部件进行装配的过程。通常,按照生产方式的连续性不同,制造分为流程制造与离散制造(也有离散和流程混合的生产方式)。根据我国现行标准GB/T4754-2002,我国制造业包括31个行业,又进一步划分约175个中类、530个小类,涉及了国民经济的方方面面。

智能是由“智慧”和“能力”两个词语构成。从感觉到记忆到思维这一过程,称为“智慧”,智慧的结果产生了行为和语言,将行为和语言的表达过程称为“能力”,两者合称为“智能”。因此,将感觉、记忆、回忆、思维、语言、行为的整个过程称为智能过程,它是智慧和能力的表现。

然而,由于我国技术基础薄弱发展不平衡,企业在智能制造实施和升级改造过程中往往茫然不知从何做起。因此,以下将根据智能制造的描述性定义,提出关于智能工厂、制造环节及装备智能化、网络互联互通、端到端数据流等四个方面的初步认识,以期说明智能制造的主要内容。

智能制造的载体智能工厂

智能工厂是实现智能制造的载体。在智能工厂中通过生产管理系统、计算机辅助工具和智能装备的集成与互操作来实现智能化、网络化分布式管理,进而实现企业业务流程、工艺流程及资金流程的协同,以及生产资源(材料、能源等)在企业内部及企业之间的动态配置。

一方面,“工欲善其事,必先利其器”,实现智能制造的利器就是数字化、网络化的工具软件和制造装备,包括以下类型:

计算机辅助工具,如CAD(计算机辅助设计)、CAE(计算机辅助工程)、CAPP(计算机辅助工艺设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试,如ICT信息测试、FCT功能测试)等;

计算机仿真工具,如物流仿真、工程物理仿真(包括结构分析、声学分析、流体分析、热力学分析、运动分析、复合材料分析等多物理场仿真)、工艺仿真等;

工厂/车间业务与生产管理系统,如ERP(企业资源计划)、MES(制造执行系统)、PLM(产品全生命周期管理)/PDM(产品数据管理)等;

智能装备,如高档数控机床与机器人、增材制造装备(3D打印机)、智能炉窑、反应釜及其他智能化装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等;

新一代信息技术,如物联网、云计算、大数据等。
另一方面,智能制造是一个覆盖更宽泛领域和技术的“超级”系统工程,在生产过程中以产品全生命周期管理为主线,还伴随着供应链、订单、资产等全生命周期管理,如图1所示。 

天拓解析 多个维度了解智能制造
图1:智能制造生命周期管理

在智能工厂中,借助于各种生产管理工具/软件/系统和智能设备,打通企业从设计、生产到销售、维护的各个环节,实现产品仿真设计、生产自动排程、信息上传下达、生产过程监控、质量在线监测、物料自动配送等智能化生产。下面介绍了几个智能工厂中的典型“智能”生产场景。

场景1:设计/制造一体化。在智能化较好的航空航天制造领域,采用基于模型定义(MBD)技术实现产品开发,用一个集成的三维实体模型完整地表达产品的设计信息和制造信息(产品结构、三维尺寸、BOM等),所有的生产过程包括产品设计、工艺设计、工装设计、产品制造、检验检测等都基于该模型实现,这打破了设计与制造之间的壁垒,有效解决了产品设计与制造一致性问题。制造过程某些环节,甚至全部环节都可以在全国或全世界进行代工,使制造过程性价比更优化,实现协同制造。

场景2:供应链及库存管理。企业要生产的产品种类、数量等信息通过订单确认,这使得生产变得精确。例如:使用ERP或WMS(仓库管理系统)进行原材料库存管理,包括各种原材料及供应商信息。当客户订单下达时,ERP自动计算所需的原材料,并且根据供应商信息即时计算原材料的采购时间,确保在满足交货时间的同时使得库存成本更低甚至为零。

场景3:质量控制。车间内使用的传感器、设备和仪器能够自动在线采集质量控制所需的关键数据;生产管理系统基于实时采集的数据,提供质量判异和过程判稳等在线质量监测和预警方法,及时有效发现产品质量问题。此外,产品具有标识(条形码、二维码、电子标签),可以以文字、图片和视频等方式追溯产品质量所涉及的数据,如用料批次、供应商、作业人员、作业地点、加工工艺、加工设备信息、作业时间、质量检测及判定、不良处理过程等。

场景4:能效优化。采集关键制造装备、生产过程、能源供给等环节的能效相关数据,使用MES系统或EMS(能源管理系统)系统对能效相关数据进行管理和分析,及时发现能效的波动和异常,在保证正常生产的前提下,相应地对生产过程、设备、能源供给及人员等进行调整,实现生产过程的能效提高。

因此,智能工厂的建立可大幅改善劳动条件,减少生产线人工干预,提高生产过程可控性,重要的是借助于信息化技术打通企业的各个流程,实现从设计、生产到销售各个环节的互联互通,并在此基础上实现资源的整合优化和提高,从而进一步提高企业的生产效率和产品质量。

如何实现制造环节智能化

互联网技术的普及使得企业与个体客户间的即时交流成为现实,促使制造业实现从需求端到研发端、服务端的拉动式生产,以及从“生产型”向“服务型”模式转变。因此,企业领先于竞争对手完成数字化、网络化与智能化的转型升级,实现大规模定制化生产来满足个性化需求并提供智能服务,方能在瞬息万变的市场上立于不败之地。

看得见的是个性化定制和智能服务,看不见的是生产制造各环节的数字化、网络化与智能化。实现智能制造,网络化是基础,数字化是工具,智能化则是目标。 
 
 

数字化、网络化、智能化是保证智能制造实现“两提升、三降低”经济目标的有效手段。数字化确保产品从设计到制造的一致性,并且在制样前对产品的结构、功能、性能乃至生产工艺都进行仿真验证,极大地节约开发成本和缩短开发周期。网络化通过信息横纵向集成实现研究、设计、生产和销售各种资源的动态配置以及产品全程跟踪检测,实现个性化定制与柔性生产的同时提高了产品质量。智能化将人工智能融入设计、感知、决策、执行、服务等产品全生命周期,提高了生产效率和产品核心竞争力。


如何实现网络互联互通

智能制造的首要任务是信息的处理与优化,工厂/车间内各种网络的互联互通则是基础与前提。没有互联互通和数据采集与交互,工业云、工业大数据都将成为无源之水。智能工厂/数字化车间中的生产管理系统(IT系统)和智能装备(自动化系统)互联互通形成了企业的综合网络。按照所执行功能不同,企业综合网络划分为不同的层次,自下而上包括现场层、控制层、执行层和计划层。图2给出了符合该层次模型的一个智能工厂/数字化车间互联网络的典型结构。随着技术的发展,该结构呈现扁平化发展趋势,以适应协同高效的智能制造需求。 

天拓解析 多个维度了解智能制造

图2:智能工厂/数字化车间典型网络结构

智能工厂/数字化车间互联网络各层次定义的功能以及各种系统、设备在不同层次上的分配如下。


计划层:实现面向企业的经营管理,如接收订单,建立基本生产计划(如原料使用、交货、运输),确定库存等级,保证原料及时到达正确的生产地点,以及远程运维管理等。企业资源规划(ERP)、客户关系管理(CRM)、供应链关系管理(SCM)等管理软件都在该层运行。


执行层:实现面向工厂/车间的生产管理,如维护记录、详细排产、可靠性保障等。制造执行系统(MES)在该层运行。


监控层:实现面向生产制造过程的监视和控制。按照不同功能,该层次可进一步细分为:
监视层:包括可视化的数据采集与监控(SCADA)系统、HMI(人机接口)、实时数据库服务器等,这些系统统称为监视系统;


控制层:包括各种可编程的控制设备,如PLC、DCS、工业计算机(IPC)、其他专用控制器等,这些设备统称为控制设备;


现场层:实现面向生产制造过程的传感和执行